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Linking neuroimaging and mental health 
data from the ABCD Study to UrbanSat 
measurements of macro environmental 
factors

Although numerous studies over the past decade have highlighted the 
influence of environmental factors on mental health, globally applicable data 
on physical surroundings such as land cover and urbanicity are still limited. 
The urban environment is complex and composed of many interacting 
factors. To understand how urban living affects mental health, simultaneous 
measures of multiple environmental factors need to be related to symptoms of 
mental illness, while considering the underlying brain structure and function. 
So far, most studies have assessed individual urban environmental factors, 
such as greenness, in isolation and related them to individual symptoms 
of mental illness. We have refined the satellite-based ‘Urban Satellite’ 
(UrbanSat) measures, consisting of 11 satellite-data-derived environmental 
indicators, and linked them through residential addresses with participants 
of the Adolescent Brain Cognitive Development (ABCD) Study. The ABCD 
Study is the largest ongoing longitudinal and observational study exploring 
brain development and child health, involving 11,800 children, assessed at 
9–16 years of age, from 21 sites across the USA. Here we describe linking of the 
ABCD Study data with UrbanSat variables, including each subject’s residential 
address at their baseline visit, including land cover and land use, nighttime 
lights and population characteristics. We also highlight and discuss important 
links of the satellite-data variables to the default mode network clustering 
coefficient and cognition. This comprehensive dataset provides an important 
tool for advancing neurobehavioral research on urbanicity during the critical 
developmental periods of childhood and adolescence.

The idea of spatially mapping diseases to understand how they relate 
to the human and physical environment has a rich history of urban 
applications, going back to the pioneering work of John Snow, who, 
in 1854, mapped the locations of cholera cases in London to identify 
the source of the disease around a pump at Broad Street1. Since then, 
many studies have highlighted the complex inter-relationships between 
the urban environment and public health2,3. Recent studies emphasize 
the link between environmental factors and mental disorders4, with 

12–20% of conditions such as depression and anxiety attributed to 
environmental influences5.

According to the United Nations (UN), more than half the world’s 
population live in cities, and it is estimated that by 2050. seven out of 
ten people will probably live in urban areas6. Urbanization has substan-
tial impacts on public health7, including mental health issues8. Higher 
prevalences of common psychopathological symptoms are reported in 
cities8, including depression and substance abuse9. Urbanization is also 
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between LULC and mental disorders has emerged as an increasingly 
crucial area of research.

Urbanization has been linked to a higher prevalence of mental 
disorders8. Conversely, the density of green spaces and access to nature 
within urban environments have shown an inverse relationship with 
stress levels and the incidence of mental disorders22.

Evidence suggests that a higher vegetation index and residential 
greenness, including greenness surrounding schools and kindergar-
tens, may reduce symptoms of attention-deficit/hyperactivity disor-
der23. Green spaces may also positively influence development from 
an early age. For instance, Engemann and colleagues22 demonstrated 
that childhood residence in low-green areas elevated the risk of mental 
illness by up to 55% in Danes22, with both genetic predisposition and 
green-space exposure influencing schizophrenia risk24. Similar positive 
effects on cognitive development25, partly attributed to a decrease in 
air-pollution levels, and reduced problematic behaviors in children 
were observed in studies from Barcelona and South Korea, using high-
resolution satellite data and the modified soil-adjusted vegetation 
index, respectively, highlighting the benefits of green environments 
for children’s mental development26. Longitudinal evidence shows that 
short- and long-term green-space exposure near residences reduces 
adolescent aggressive behaviors, with even slight vegetation increases 
causing notable behavioral improvement. These associations remained 
unaffected by sociodemographic and neighborhood quality factors, 
suggesting green space to be a preventive measure for urban external-
izing problems27. Interestingly, the protective effects of green space 
might be particularly relevant for certain subgroups; for example, 
children from lower-income households experience greater stress from 
artificial light at night than do those from higher-income households 28.

The benefits of green spaces extend beyond early development. 
A comparison of street-view and satellite methods assessing green 
and blue spaces in Beijing revealed an inverse association with geri-
atric depression29, and satellite-based vegetation measurements of 
green space were found to reduce somatization and anxiety symptoms 
among mothers in a Spanish birth cohort30. Furthermore, Brown and 
colleagues31 confirmed the link between green surroundings, measured 
using the NDVI, and mental health in elderly people, showing 18% and 
28% lower risk of Alzheimer’s disease and depression, respectively, 
demonstrating that green environments may boost mental wellbeing 
in older adults, especially in disadvantaged areas.

When delving into such relationships, it becomes apparent that 
ecological and economic factors intertwine in distinct ways across 
countries. Thus, urban green space and gross domestic product (GDP) 
have been linked to a nation’s happiness level, with urban green space 
influencing happiness in wealthier countries and GDP in less wealthy 
ones. Social support mediated the relationship between urban green 
space and happiness, whereas GDP moderated this connection32.

Although numerous studies have highlighted the positive impacts 
of green spaces on mental health, it is essential to approach this subject 
with a nuanced perspective, taking into account critical mediators 
of this relationship. A recent Dutch study delved into the long-term 
relationship between residential greenery exposure and adult suicide 
mortality, emphasizing individual-level risk factors in this associa-
tion33. Likewise, the presence and severity of affective disorders were 
found to be associated not just with population density, but also with 
the quality of a neighborhood’s socioeconomic, physical and social 
characteristics34. Further evidence for such indirect pathways was 
provided by Wang and colleagues35, who found that 62% of the relation-
ship between streetscape greenery and mental wellbeing is mediated 
by factors such as physical activity, stress, air quality, noise and social 
cohesion, whereas NDVI greenery is partially mediated by physical 
activity and social cohesion, explaining 22% of the association. This 
suggests that factors beyond urbanization, including elements such 
as SES, noise levels, social cohesion and safety, may substantially influ-
ence mental health outcomes.

associated with changes to land use and land cover (LULC) patterns. It 
is often accompanied by the expansion of built-up land cover, together 
with the conversion of farmland, wetlands or lakes into urban areas10 
and the transformation of natural surfaces into impervious ones11. 
Together, these changes produce a complex urban environment that 
gives rise to different environmental profiles, which may affect mental 
health in distinct ways2. Many aspects of the urban environment and 
LULC changes can be captured by sensors on satellites, which provide 
synoptic coverage at various spatial and temporal resolutions and 
enable us to understand many aspects of Earth’s surface, water and 
atmospheric systems. Remote-sensing satellite data thus enable the 
registration of not only the individual environmental measures (for 
example, greenness and so on) that are typically found in urban set-
tings, but also the very complex patterns of the urban environment 
that reflect real life-exposure.

We have refined the ‘Urban Satellite’ (UrbanSat) variables origi-
nally developed by Xu and colleagues2, which feature 11 environmen-
tal factors, calibrated to measure population density as a proxy for 
urbanicity. Each environmental factor can be analyzed individually 
or in combination with other factors to assess distinct environmental 
profiles that contribute to population density and that may affect 
mental health in different ways. To provide a tool for mechanistic inves-
tigations of the impacts of environmental profiles on brain, cognition 
and mental health, the refined UrbanSat data were then linked to the 
Adolescent Brain Cognitive Development Study (the ABCD Study), the 
largest ongoing US study on child brain development. This was carried 
out across 21 sites12, encompassing a cohort of over 11,000 children 
9–10 years of age, with extensive measures on physical and mental 
health, neurocognition, social and emotional functions, culture, envi-
ronment and multimodal brain imaging13 ascertained during a critical 
developmental period, which is thought to be particularly sensitive to 
environmental impact14,15.

In the following sections, we review recent studies on UrbanSat 
attributes relating to mental health and neuroimaging data and 
describe our developed variables linking satellite imagery with a US-
wide longitudinal neuroimaging cohort of adolescents. We provide 
examples of studies correlating satellite measurements of individual 
environmental factors, such as green spaces, the density of urban 
areas and water bodies, with measures of mental health and illness, 
both cross-sectional and longitudinal. We then describe in detail the 
composition of UrbanSat and present a use case in which we relate 
socioeconomic status (SES; household income and parental education) 
with UrbanSat indicators. By providing evidence for the relevance of 
individual factors of the urban environment for mental health, the exist-
ing studies lay the groundwork for more comprehensive mechanistic 
investigations of complex, real-life measures of the urban environment, 
as are being enabled by the linking of UrbanSat with the ABCD Study.

Linking environment features and mental 
health—academic literature trends
LULC measurements and their relation to mental health
Different methods can be used to measure green spaces in the urban 
environment, including remotely sensed spectral indices (for exam-
ple, the normalized difference vegetation index (NDVI)), green space 
delineation, inventory, usage, their spatiotemporal evolution, char-
acteristics and fragmentation16. Although exposure to green spaces 
may have positive effects on physical health (for example, decreasing 
the risk for obesity, diabetes and cardiovascular diseases) and mental 
health17,18, exposure to green spaces does not have universally positive 
or negative effects on human health. In some cases, due to the complex 
relationship between green spaces and other environmental, social and 
ecological indicators, the health effects of green space may contradict 
one another16.

Although discussions surrounding the environmental deter-
minants of physical health are well established19–21, the association 
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The impact of green spaces on mental health varies considerably 
across the different types of space, such as tree canopies, grassy areas 
and low-lying vegetation. Research has consistently shown that tree 
canopies have greater beneficial effects on psychological distress36, 
postpartum depression37 and general mental health38 than grasslands, 
which may not consistently support mental health36,37. These differen-
tial effects may stem from a general human preference for denser green 
spaces with moderate vegetation complexity39 and enhanced biodi-
versity40, which offer greater restorative benefits41. Additionally, tree 
canopies help mitigate heat during the summer, further supporting 
their health advantages42. Therefore, the choice of exposure indicators, 
as well as the methodology used to measure and define green spaces 
and mental health indicators, substantially influences the relationship 
between green space and mental health outcomes18, highlighting the 
utility of combining satellite-based and street-view-based data to better 
characterize green-space types in future research37.

Furthermore, the methods used to measure exposure should also 
be considered. For instance, people’s exposure to green spaces can be 
measured in different geographic contexts, including using residence-
based and mobility-based methods. Manifesting the uncertain geo-
graphic context problem, mobility-based measurements of people’s 
exposure to green spaces may better represent the impact of green 
spaces on health outcomes than residence-based measurements43.

The spatial configuration, composition and fragmentation of LULC 
may also impact mental health. For instance, Bertram and colleagues44 
have shown that although LULC fragmentation has little impact on 
people’s wellbeing at an aggregate level, wellbeing is positively affected 
by lower average degrees of soil sealing and larger shares of vegeta-
tion, especially in areas with above-average population density. In a 
study conducted across large metropolitan areas in the USA, Tsai and 
colleagues45 examined the relationships between mental health and 
the characteristics (amount and patterns) of urban green land cover, 
showing that more spatially dispersed forests have the most positive 
bivariate association with lower prevalence of frequent mental distress, 
while more connections between forest and built features are associ-
ated with lower mental distress.

Other types of LULC have also been found to be associated with 
mental health, with several studies suggesting a positive linkage 
between exposure, proximity or visibility to ‘blue spaces’ and mental 
health46–48, which can be explained by the contribution of such spaces 
to increased physical activity, enhanced restoration and improved 
environmental factors49. ‘Gray spaces’ and ‘brown spaces’ have also 
been shown to be related, at least to some extent, to mental health. For 
example, Nazif-Munoz and colleagues50 evaluated the effects of LULC 
on depression using a continuous measure of ‘grayness’ (that is, build-
ings, roads, parking lots and other impervious surfaces) and ‘brown-
ness’ (arid pervious natural settings without vegetation), suggesting 
a protective association between ‘brownness’ and depression and an 
adverse association between ‘grayness’ and depression50. Moreover, 
although it is not always measured by means of satellite observations, 
studies have shown that living near vacant land and accessibility to 
abandoned areas such as waste or leftover land impact mental health 
issues, such as anxiety51, as well as life satisfaction52.

Remotely sensed nighttime light measurements and mental 
health
Artificial light at night (ALAN), emitted from stationary and non-sta-
tionary sources across outdoor environments associated with human 
activity53, may also affect human health. Exposure to ALAN has been 
linked to mental disorders54, including depressive symptoms, suicidal 
behaviors55 and anxiety disorders56. ALAN may act as a social determi-
nant of human health affecting physical and mental health directly and 
indirectly, positively and negatively. For example, although exposure 
to ALAN may have positive impacts on human health (for example, 
with light-based interventions), it also imposes extra stress on human 

health by disturbing human circadian rhythms and sleep, which in turn 
impacts various aspects of mental health57.

Despite some inherent challenges associated with measuring the 
relationship between ALAN and human health using satellite-measured 
nighttime light (NTL)—for example, contextual settings, sensor con-
figurations and spatial resolution58—NTL, which can act as a proxy 
for urbanization, economic and industrial activity, and population 
distribution, has demonstrated relationships with a variety of mental 
health outcomes.

For instance, Ohayon and colleagues59 used Defense Meteorologi-
cal Satellite Program–Operational Linescan System observations to link 
higher NTL levels with delayed bedtime and wake-up time, shorter sleep 
duration, increased daytime sleepiness and dissatisfaction with sleep 
quantity and quality, raising the likelihood of a diagnosis of circadian 
rhythm disorder. This relationship was confirmed in a study involving 
US adolescents that associated higher NTL levels with later weeknight 
bedtimes, shorter sleep durations, as well as increased past-year mood 
and anxiety disorders prevalence56. Similarly, in children 2–18 years of 
age, increased NTL exposure within 500 m of their residence elevated 
sleep disturbances and the risk of sleep disorders, particularly among 
those under 12 years of age60.

Important research has highlighted the links between higher NTL 
and worse mental health outcomes. In South Korea, Min and Min55 
found significant associations between NTL and depressive symptoms 
and suicidal behaviors in South Korean adults. Similarly, in the Nether-
lands, NTL exposure within 100 m of residences was found to be related 
to higher depressive symptoms among individuals 18–65 years of age61. 
This was confirmed by Liao and colleagues3, who used data extracted 
from UK Biobank Cohort participants to associate higher NTL with 
increased mental problems, including depressed mood and tiredness/
lethargy, and physical health problems such as obesity, as well as more 
air pollution, less green space, higher economic and neighborhood 
deprivation and higher household poverty. Leveraging this dataset, 
a further study established a connection between heightened NTL 
exposure and an elevated risk of substance-use disorder and depres-
sion, particularly in individuals with increased iron deposition in the 
hippocampus and basal ganglia62.

Satellite data and neuroimaging
Despite many opportunities, research exploring the relationship 
between satellite data, brain features and mental health remains scarce. 
A seminal study by Xu and colleagues2 provided evidence for a satel-
lite-data-derived urbanicity factor being negatively related to medial 
prefrontal cortex volume and positively to cerebellar vermis volume in 
Chinese (‘CHIMGEN’ sample) and European (‘IMAGEN’ cohort) young 
adults. Urbanicity also correlated with functional network connectiv-
ity, particularly in Chinese participants, and was associated with both 
positive and negative outcomes, in particular improved social cogni-
tion, for example, perspective-taking, but also increased depression 
symptoms, mediated by brain changes, with susceptibility peaking 
during mid-childhood and adolescence.

Furthermore, Dadvand and colleagues63 demonstrated that green 
neighborhoods may benefit brain development and cognitive function. 
Specifically, lifelong greenness exposure was found to be associated 
with increased gray and white matter in prefrontal, premotor and cer-
ebellar regions, predicting improved working memory and reduced 
inattentiveness.

In conclusion, current research exhibits substantial gaps in under-
standing the link between the different features of satellite data—and 
their real-life combinations characteristic of urban life—and mental 
health. In particular, there is a need to uncover the biological mecha-
nisms underlying this relationship, including brain structure and func-
tion. To address this gap, utilizing the ABCD dataset in conjunction 
with the UrbanSat dataset presents a unique opportunity. The ABCD 
study includes an extensive dataset from a large and diverse sample of 
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9- and 10-year-old children who are being followed up longitudinally 
and are currently 16 years old. This period spans a critical age of brain 
plasticity, allowing examination of how environmental factors impact 
brain development and behavior during this highly formative period. 
The extensive and comprehensive characterization of ABCD enables 
the generation of robust findings and reveals their applicability across 
different populations.

UrbanSat variables in the ABCD Study
Sample description
The ABCD Study’s UrbanSat variables consist of 11 key environmental 
indicators representing land cover characteristics, NTL, population 
estimates and remote sensing indices in 2017 (Supplementary Fig. 1 pre-
sents a histogram), which were derived from multiple sources, includ-
ing the Copernicus Global Land Service (CGLS)64, the Earth Observation 
Group of the Colorado School of Mines65, WorldPop66 and Sentinel-2 
data processed within Google Earth Engine (GEE) (Table 1). The data are 
available through the National Institute of Mental Health data archive as 
part of the ABCD Study 5.0 release (https://doi.org/10.15154/8873-zj65) 
and include satellite data values linked to three concurrent addresses 
for each participant at the baseline study visit when the participants 
were 9 or 10 years of age67 (more information is provided in the Sup-
plementary Information).

Data analysis
The UrbanSat data sources were unified into new raster files with iden-
tical parameters (extent, pixel size and pixel locations) and aggre-
gated to an ~1-km grid covering the 48 contiguous states of the USA (a 
detailed methodology for calculating these UrbanSat raster products 
is provided in the Supplementary Information). Aggregation to a uni-
form raster pixel grid provides a critical level of consistency between 
the disparate datasets: by regularizing the pixels, the new values for 
LULC, NTL, population and spectral indices each represent the same 
land areas on Earth when sampling pixel values at given geocoordi-
nates. Additionally, by aggregating to a new larger pixel size of 1 km, we 

characterize the environment of the neighborhood surrounding each 
study participant. Similar studies have also relied on 1-km radii around 
participants’ residency to represent the everyday living environment 
when linking greenery and public health68. In a literature review of 260 
analyses, Browning and Lee69 demonstrated that greenness measured 
at larger distances from people’s home environments—specifically 
buffers between 500 m and 999 m in size—predicted physical health 
better than smaller buffers69. However, one limitation of this 1-km fixed 
size aggregation approach is that although it attempts to capture the 
environment surrounding participant geocoordinates, it is possible 
that different variables instead affect subjects at different spatial scales.

Input data for each dataset were obtained for the year 2017 to align 
with the baseline ABCD Study visit timing (October 2016 to October 
2018) and comprised LULC (Fig. 1 and Table 2), NTL and population 
data (Fig. 2) and spectral indices (Fig. 3), as described in more detail in 
the Supplementary Information.

UrbanSat characterization and association with behavioral, 
cognition and brain function in the ABCD Study
The UrbanSat data in ABCD release 5.0 encompass 11 variables across 
three baseline addresses, reflecting diverse regional environmental 
aspects (Supplementary Information and Supplementary Fig. 1). A 
strong correlation emerged between forest and built-up land cover, 
NDVI, normalized difference built-up index (NDBI), NTL and popu-
lation, whereas normalized difference water index (NDWI) showed 
moderate correlations with other indicators (Fig. 4, left) (details are 
provided in the Supplementary Information).

Behavior and cognition. To demonstrate the influence of UrbanSat 
indicators on behavior, cognition and brain function, we examined 
associations with measures from the ABCD Study’s baseline assess-
ments at 9–10 years of age and utilized the total problem count from 
the Child Behavior Checklist (CBCL)70 and the total score composite 
from the NIH Toolbox cognition battery71 for our analyses. Detailed 
assessment methodologies and findings are presented in the Sup-
plementary Information.

Resting-state functional MRI data. We extracted 53 intrinsic connectiv-
ity networks via a spatially constrained independent component analysis 
framework, organizing them into seven functional domains (Supple-
mentary Fig. 2 and Supplementary Table 1). We computed the functional 
network connectivity and represented the brain as a connected graph, 
focusing on the default mode network (DMN) (Fig. 4, right). We focused 
on the DMN because it is recognized as a critical component of the whole 
brain’s functional network architecture72, and alterations related to the 
DMN have commonly been observed in a broad spectrum of mental 
disorders73–76 and in response to environmental adversity77. As an initial 
step, we calculated the average clustering coefficient of DMN intrinsic 
connectivity networks, which gives an overall measure of how DMN 
regions connect to the rest of the brain78. Detailed methodologies and 
equations are provided in the Supplementary Information.

Results. We evaluated the correlation between SES (household income: 
total combined family income for the past 12 months, range 0–10) and 
parental education (never attended to doctoral degree, range 0–21) 
with UrbanSat indicators (Supplementary Table 2). The level of parental 
education was significantly and negatively correlated to built-up land, 
NDBI, NTL and population, and positively correlated to cropland, forest 
land and NDVI. Household income presented very similar associations 
with UrbanSat indicators and was most significantly correlated with 
NDBI. Therefore, due to multicollinearity, two sets of linear mixed-
effect models were examined with and without SES covariates, and 
were implemented for UrbanSat association analyses.

Without the inclusion of SES, the UrbanSat indicators were asso-
ciated with cognition and DMN clustering (except for forest land), 

Table 1 | A description of the 11 key UrbanSat environmental 
indicators within the ABCD Study

Description Units Source (source 
resolution)

1 LULC

1.1 Percent 2017 built-up land 
use

Fraction of total (0–1) CGLS (100 m)

1.2 Percent 2017 forest area Fraction of total (0–1) CGLS (100 m)

1.3 Percent 2017 cropland use Fraction of total (0–1) CGLS (100 m)

1.4 Percent 2017 grass area Fraction of total (0–1) CGLS (100 m)

1.5 Percent 2017 permanent 
inland water area

Fraction of total (0–1) CGLS (100 m)

1.6 Percent 2017 seasonal 
water area

Fraction of total (0–1) CGLS (100 m)

2 NTL

2.1 Total monthly average 2017 
night-light radiance

nW cm−2 sr−1 CGLS (100 m)

3 Population

3.1 Total 2017 population Number of people WorldPop (100 m)

4 Spectral indices

4.1 Percent 2017 area with 
NDVI index over 0.2

Fraction of total (0–1) Sentinel-2 (GEE) 
(10 m)

4.2 Percent 2017 area with 
NDWI index over 0.3

Fraction of total (0–1) Sentinel-2 (GEE) 
(10 m)

4.3 Average 2017 NDBI index 
value

NDBI index value Sentinel-2 (GEE) 
(10 m)
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with NTL also being associated with problem behavior (Table 3, top). 
With the inclusion of SES, NDBI was significantly associated with the 
cognitive total score, and NTL was significantly associated with the 
DMN clustering coefficient and associated with the cognitive score 
(with a trend toward significance). Further analyses on subsamples 
with limited collinearity between UrbanSat and SES also confirmed 

the association between UrbanSat indicators and cognition (Sup-
plementary Table 4).

Discussion
Understanding the link between the urban environment and mental 
health requires us to account for a range of environmental factors and 
measures and relate them to symptoms of mental illness, while con-
sidering underlying brain structure and function. However, although 
there has been an exponential increase in the availability of satellite 
records, integrating them with mental health presents challenges due 
to the scarcity of large-scale datasets on brain and behavior.

So far, most studies have assessed individual urban environmental 
factors (such as greenness) in isolation, then related them to individual 
symptoms of mental illness, but the very wide range of remotely sensed 
satellite indicators can enable an understanding of the complex physi-
cal urban environment and its impacts on mental health. In this Perspec-
tive we refine the satellite-based UrbanSat measures (consisting of 11 
satellite-data-derived environmental indicators) and link them through 
residential addresses with participants of the ABCD Study. The ABCD 

Percent forest

0 100

Percent cropland

0 100

Percent grassland

0 100

Percent urban

0 100

Percent permanent water

0 100

Percent seasonal water

0 100

Fig. 1 | Spatial distribution and characteristics of the six LULC maps covering the 48 contiguous states of the USA incorporated in the UrbanSat indicators. 
Shown are plots of forest percent, crop percent, grass percent, urban percent, permanent inland water percent and seasonal water percent. Basemap credit: Esri, 
TomTom, FAO, NOAA, USGS.

Table 2 | Description of the UrbanSat Copernicus 
classifications incorporated into the ABCD Study

LULC Copernicus classification

Forest 111–116: closed forest (evergreen or deciduous, needle or broad 
leaf, mixed, unknown)
121–126: open forest (evergreen or deciduous, needle or broad 
leaf, mixed, unknown)

Grass 30: herbaceous vegetation

Crop 40: cultivated and managed vegetation/agriculture (cropland)

Urban 50: urban/built up

Water 80: permanent inland water bodies
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database, with its deep phenotyping information encompassing mental 
health, cognition and other health indicators, can aid in disentangling 
these effects. It captures over 11,800 children with biennial brain scans, 
and it is considered the largest ongoing study on brain development 
and child health across 21 US sites.

Within the large domain of linked external data within the ABCD 
Study67, this Perspective provides an opportunity to understand the 
interrelation of macroscale environmental factors when children are 
9 and 10 years of age with brain development and health. Each environ-
mental factor can be analyzed individually or in combination with other 
factors to assess distinct environmental profiles that contribute to 
population density and that may affect mental health in different ways.

As a proof of concept, our simple analyses lend support for the 
interrelation of environmental factors derived from satellite images with 
brain and cognitive development and mental health, while also hinting 
at the need for careful modeling of multicollinearity between UrbanSat 
indicators and SES indicators. We thus provide strong evidence for NDBI 
negatively affecting cognitive ability when controlled for SES.

The phenotypic variance explained by SES was higher than that 
of the environmental measures. Although this is expected given that 
SES, encompassing a wide array of risk factors and closely linked to 
psychosocial risks, is widely recognized as a key factor influencing 
mental health outcomes79, UrbanSat data still bring to light nuanced 
details about the environmental backdrop of mental health that SES 
does not fully encompass. With the precise, objective measurements 
of environmental aspects such as green spaces, the density of urban 
areas and water bodies, data from UrbanSat enrich our understanding 
of how physical surroundings impact mental wellbeing. This integra-
tion allows us to observe not only the static socioeconomic conditions 
but also the dynamic environmental changes and their impact on 
mental health over time, pinpointing specific interventions to boost 
mental wellbeing in various communities. In areas with homogeneous 
SES in particular, the environmental variability captured by UrbanSat 
data might elucidate additional variation in mental health outcomes. 

This integration can also enable a better understanding of the vari-
ous potential confounding associations between different types of 
environmental feature found in urban settings and their implications 
for urban health80.

Furthermore, satellite imagery, with its broad coverage and rich 
environmental detail, presents a largely untapped resource for socioec-
onomic studies, with particular value in areas lacking up-to-date census 
or survey data. The density of the built environment, land use patterns 
and the glow of NTL captured from space can serve as insightful proxies 
for SES. These markers can shed light on urban development, economic 
activities and even how densely populated an area is—all key indicators 
of socioeconomic health. By weaving these satellite-based insights 
into our research, we can deepen our grasp of how socioeconomic 
factors influence health and wellbeing, especially in less-studied areas. 
Looking ahead, harnessing this method could bridge important data 
voids, offering a richer, more detailed picture of how our surroundings 
and socioeconomic conditions intertwine to affect health outcomes.

Associations between illness and environment vary across differ-
ent parts of the world. For instance, research reveals mixed effects of 
urbanicity on psychosis risk globally, with urban living linked to higher 
risk in Northern Europe but not in Southern Europe or some low- and 
middle-income countries, where it may even be protective. These 
inconsistencies suggest that factors beyond urbanicity itself, such 
as social cohesion and resource availability, influence mental health 
outcomes (for a review, see ref. 81). Satellite data offer a promising tool 
to explore these complex associations by providing objective, consist-
ent measures of urbanicity and environmental factors across diverse 
geographical settings. This approach could help identify specific urban 
features that correlate with mental health risks or benefits, advancing 
our understanding of the relationship between urban environments 
and psychopathological symptoms such as psychosis.

Although research on the relationship between water bodies, or 
‘blue spaces’, derived from satellite data and mental health is scarce, this 
link has increasingly been recognized in environmental health research. 

NTL radiance

0 21,818

Population

0 44,983

Fig. 2 | Spatial distribution and characteristics of NTL and population maps 
incorporated in the UrbanSat indicators. NTL data are sourced from the 
Earth Observation Group Annual Visible and Infrared Imaging Suite (VIIRS) 
Night Light version 2 (VNL 2) product95. These data provide an average monthly 
radiance at an original resolution of 15 arcsec (~500 m). The VNL 2 data are 
based on VIIRS satellite observations and include filtering for clouds, removal 
of fires and background isolation. Our aggregated NTL product (NTL radiance) 

provides the sum of annual NTL radiance values within each 1-km output pixel. 
Population data from 2017 (‘population’) are based on WorldPop Population 
Counts96, specifically the US unconstrained top–down 100-m-resolution dataset. 
These data take population census counts and use other geospatial data to 
disaggregate census tract information into 100 × 100-m2 pixels. Basemap credit: 
Esri, TomTom, Garmin, FAO, NOAA, USGS, EPA, USFWS.
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Blue spaces are linked to enhanced mental health and lower distress 
through their support for recreational activities and their therapeutic 
visual and physical presence82,83, with benefits increasing for those 
individuals living in urban areas and facing material deprivation84.

The results presented here need to be understood while considering 
their limitations. For example, the spatial resolution of the satellite meas-
urements may impact their ability to effectively capture the full array 
of environmental features people are exposed to in urban settings (for 
example, small green spaces people frequently visit in the city16), as well 
as their impacts on people’s health43. Here we relied on inferred exposure 
from UrbanSat data, based on proximity to environmental features. To 
address this and enhance the accuracy of exposure assessment, future 
studies should consider merging UrbanSat data with passively sensed 
data, such as accelerometer readings for physical activity and Global Posi-
tioning System data for mobility patterns. This integration would provide 
a direct measure of individual engagement with the environment.

Furthermore, the relationships between environmental factors 
and their health effects are not always stable over space and time and 

may vary both across geographic areas85 and the study’s assumed con-
textual units, including geographical delineations and the timing and 
duration for which individuals experience these contextual influences. 
As alluded to in the uncertain geographic context problem86, residential 
neighborhoods do not always accurately represent the actual areas that 
exert the contextual influences of the environment and other activity 
spaces, and people’s daily mobility patterns should also be considered 
when defining the contextual units87. Environmental factors may have 
different health effects in different contexts, such as day and night, 
weekday and weekend. For instance, people are usually exposed to 
ALAN during the night and to green spaces during the day, introduc-
ing potential context errors that might affect the interpretation of the 
association between the environment and health outcomes88.

Although initial evidence for the potential involvement of the 
DMN is provided, the comprehensive biological mechanisms linking 
environmental factors (such as those captured by UrbanSat variables) 
and mental health remain unclear. These connections involve complex 
physiological, psychological and social pathways, providing important 

Percent NDVI > 0.2

0 100

Percent NDWI > 0.3

0 100

NDBI

–0.97 0.45

NDBI

–0.97 0.45

Percent forest

0 100

Satellite imagery

Fig. 3 | Spatial distribution of the NDVI (percent NDVI above 0.2), NDWI 
(percent NDWI above 0.3) and NDBI within the UrbanSat dataset. Spatial 
distributions were calculated using 2017 Sentinel-2 Multispectral Instrument 
Level-1C data accessed via GEE. Bottom row: comparison of the percentage 

of forest cover, NDBI and satellite imagery within the Washington DC area, 
demonstrating higher NDBI in urban and less vegetated areas. Basemap credit: 
Esri, TomTom, FAO, NOAA, USGS, Earthstar Geographics, DCGIS, Fairfax County, 
VA, M-NCPPC, VGIN, Garmin, SafeGraph, METI/NASA, EPA, NPS, USFWS.
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avenues for future research. For instance, in terms of biologically plau-
sible pathways, the strengthening of physiological systems such as res-
piratory health and immune function may have a crucial role in linking 
green space to a reduced risk of psychopathology89. In addition, it has 
been observed that environmental pollutants, especially fine particles, 
can breach the protective barrier around the brain, potentially causing 
damage to the nervous system by triggering neuro-inflammation, dis-
rupting neural signaling and provoking immune responses90. In terms 
of indirect effects, nature exposure can enhance psychological aspects 

by reducing negative emotions, while promoting positive feeling91 and 
replenishing cognitive resources92, and also contributing to adaptive 
perceptions of stressors and the development of self-esteem and new 
competencies93. Moreover, neighborhood socioeconomic and social 
aspects, such as diminished social cohesion and reduced safety34, 
along with physical activity35, may mediate the relationship between 
urbanization and mental health. On the other hand, shared experiences 
in nature could potentially yield social benefits by encouraging com-
munication, providing support and fostering cooperation94.
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Table 3 | Significant associations of UrbanSat indicators with the CBCL total problem, cognitive total score and DMN 
clustering coefficient in children 9–10 years of age

UrbanSat indicators CBCL total problem N = 8,715 Cognitive total score N = 8,561 DMN clustering N = 6,837

P Percent variance 
(signa)

P Percent variance 
(signa)

P Percent variance 
(signa)

Linear mixed-effect model without SES

 Built-up land NS NS 1.28 × 10−13 0.81% (−) 6.90 × 10−3b 0.20% (+)

 Forest land NS NS 7.96 × 10−21 1.89% (+) NS NS

 NDBI NS NS 8.79 × 10−59 7.21% (−) 1.92 × 10−4 0.50% (+)

 NDVI NS NS 7.27 × 10−38 4.58% (+) 1.54 × 10−3 0.34% (−)

 NTL 6.40 × 10−3b 0.11% (+) 1.20 × 10−38 2.62% (−) 1.86 × 10−8 0.60% (+)

 Population NS NS 1.99 × 10−20 5.06% (−) 1.76 × 10−3 0.21% (+)

Linear mixed-effect model with SES covariates

 NDBI NS NS 3.91 × 10−7 0.74% (−) NS NS

 NTL NS NS 5.51 × 10−3b 0.11% (−) 1.71 × 10−3 0.20% (+)

 Household incomec 5.38 × 10−18 1.53% (−) 5.57 × 10−74 7.26% (+) 2.13 × 10−8 0.84% (−)

 Educationc NS NS 2.05 × 10−77 7.28% (+) 5.24 × 10−3b 0.20% (−)
aSign of linear effect; NS, not significant. bTrending significant, with 1.00 × 10−2 > P > 4.5 × 10−3 (Bonferroni correction threshold). cEffects are similar across different UrbanSat indicators. We report 
results from NDBI models.
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We expect to see more in-depth investigations of such intricate 
relationships in the future by linking the UrbanSat indicators with 
the ABCD data from the National Institute of Mental Health’s Data 
Archive (https://doi.org/10.15154/8873-zj65). Future research should 
capitalize on the longitudinal nature of the ABCD Study to examine 
how changes in environmental exposures, including air pollution, 
green space availability and urban heat islands, as well as their result-
ing environmental profiles over time affect mental health trajectories 
and brain development. This approach can provide critical insights 
into the temporal dynamics of environmental influences on mental 
health, highlighting periods of heightened vulnerability or resilience. 
Additionally, the effects of the physical environment can be assessed 
against the backdrop of a broad risk architecture that also includes 
social adversity levels, economic factors, genetic profiles and other 
levels of biological functioning, providing a comprehensive under-
standing of individual differences in susceptibility to environmental 
risks, contributing to a more personalized understanding of mental 
health, facilitating targeted interventions and policies.
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