New Williams et al. Research on Improving Survey Inference

November 25, 2024

Improving Survey Inference Using Administrative Records Without Releasing Individual-Level Continuous Data

Abstract

Probability surveys are challenged by increasing nonresponse rates, resulting in biased statistical inference. Auxiliary information about populations can be used to reduce bias in estimation. Often continuous auxiliary variables in administrative records are first discretized before releasing to the public to avoid confidentiality breaches. This may weaken the utility of the administrative records in improving survey estimates, particularly when there is a strong relationship between continuous auxiliary information and the survey outcome. In this paper, we propose a two-step strategy, where the confidential continuous auxiliary data in the population are first utilized to estimate the response propensity score of the survey sample by statistical agencies, which is then included in a modified population data for data users. In the second step, data users who do not have access to confidential continuous auxiliary data conduct predictive survey inference by including discretized continuous variables and the propensity score as predictors using splines in a Bayesian model. We show by simulation that the proposed method performs well, yielding more efficient estimates of population means with 95% credible intervals providing better coverage than alternative approaches. We illustrate the proposed method using the Ohio Army National Guard Mental Health Initiative (OHARNG-MHI). The methods developed in this work are readily available in the R package AuxSurvey.

Keywords: Bayesian predictive inference; Rstan; continuous auxiliary variables; generalized additive model; inclusion propensity; poststratification.

Citation

Williams SZ, Zou J, Liu Y, Si Y, Galea S, Chen Q. Improving Survey Inference Using Administrative Records Without Releasing Individual-Level Continuous Data. Stat Med. 2024 Nov 18. doi: 10.1002/sim.10270. Epub ahead of print. PMID: 39557420.

Recent Posts

McGlynn & Payne Explore the Relational Reprojection Platform

Counter-GIS Experiments in Distance Interpolation with the Relational Reprojection Platform Abstract In this paper, we discuss the cartographic genealogy and prospective uses of the Relational Reprojection Platform (RRP), an interactive tool that we built to create...

Clint Andrews–The Critical Role of University Research

The Critical Role of University Research: Funding, Challenges, and Impact This week on EJB Talks dean Stuart Shapiro and Associate Dean of Research Clint Andrews discuss the vital role federal-funded university research plays in complementing education, driving...

Payne Investigates City Digital Twins Concepts

Expanding the city digital twin in the context of crisis, cartography and computation Abstract This commentary responds to Gillian Rose's ‘Visualising human life in volumetric cities: city digital twins and other disasters’ as a framework for thinking about crisis and...

Nashia Basit (MPP/MCRP ’24) on Women’s Leadership

This week, alumna and current Governor's Fellow Nashia Basit (MPP/MCRP '24) discussed women's leadership in state government and cultivating spaces for women to be successful with Allison Chris Myers, Esq., CEO of the New Jersey Civil Service Commission....

Heldrich Report: Generative AI’s Impact

Generative Artificial Intelligence’s Impact on New Jersey’s Technology and Life Sciences Sectors: A Literature Review Generative artificial intelligence (GenAI) is a machine-learning technology that uses reasoning, problem-solving, and creativity to generate new,...